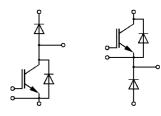
IGBТ модули

СИЛОВОЙ ІСВТ МОДУЛЬ

- ◆ одиночный ключ с диодом чоппера в цепи коллектора (МДТКИ2-200-12) или эмиттера (МТКИД2-200-12)
- встроенный быстродействующий диод обратного тока
- ♦ корпус с изолированным основанием

ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ


- преобразователи частоты
- источники бесперебойного питания
- сварочное оборудование
- ПСН подвижного состава железных дорог

ОСНОВНЫЕ ПАРАМЕТРЫ

- ♦ V_{CES} = <u>1200 B</u>
- ◆ I_C = <u>290 A</u> (T_C = 25 °C)
- ♦ V_{CEsat} = <u>**2.5 В**</u> (тип.)
- ♦ I_C = **200 A** (T_C = 80°C)

www.elvpr.ru www.moris.ru/~martin

МДТКИ

МТКИД

МАКСИМАЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

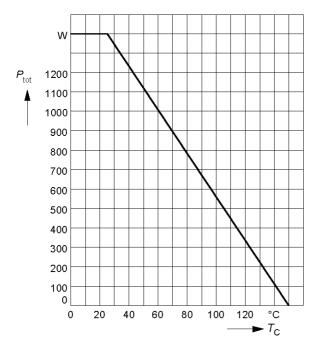
Наименование параметра	Условное обозначение	Значение параметра	Единица измерения	
Напряжение коллектор-эмиттер	V _{CE}	1200		
Напряжение коллектор-затвор (R _{GE} = 20 кОм)	V_{CGR}	1200	В	
Напряжение затвор-эмиттер	V_{GE}	± 20		
Постоянный ток коллектора				
при T _C = 25 °C	Ic	290		
при T _C = 80 °C		200	Α	
Импульсный ток коллектора (t _p =1мс)			A	
при T _C = 25 °C	I _{Cpuls}	I _{Cpuls} 580		
при T _C = 80 °C		400		
Суммарная мощность рассеивания (T_C = 25 °C) , IGBT	P _{tot}	1400	Вт	
Максимальная температура перехода	T _j	+ 150	°C	
Температура хранения	T _{stg}	- 40+ 125		
Напряжение изоляции (t = 1 мин.)	V _{isol}	2500	В (эфф)	

ТЕПЛОВЫЕ ПАРАМЕТРЫ

Наименование параметра	Условное обозначение	Значение параметра	Единица измерения
Тепловое сопротивление переход-корпус, IGBT	R_{thjc}	≤ 0.09	
Тепловое сопротивление переход-корпус, диод обратного тока / диод чоппера	R _{thjcD} / R _{thjcDC}	≤ 0.18	°С/Вт
Тепловое сопротивление корпус-охладитель, λ_{paste} = 1 Вт/м ·°C, на модуль (типовое значение)	R _{thck}	0.01	

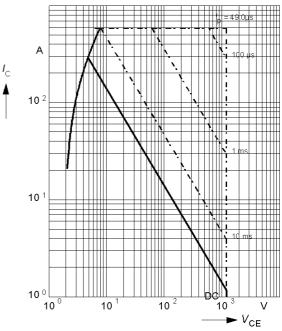
ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ (при 25 °C, если не указано иное значение)

Наименование параметра	Условное обозначение	Значение параметра			Единица
		мин.	тип.	макс.	измерения
Статические характеристики					
Пороговое напряжение затвор-эмиттер $(V_{GE} = V_{CE}, I_C = 8 \text{ мA})$	$V_{\text{GE(th)}}$	4.5	5.5	6.5	
Напряжение насыщения коллектор-эмиттер $(V_{\text{GE}} = 15 \text{ B, I}_{\text{C}} = 200 \text{ A})$ при $T_{\text{j}} = 25 ^{\circ}\text{C}$	V _{CEsat}	-	2.5	3.0	В
при T_j = 125 °C Ток утечки коллектор-эмиттер (V_{CE} = 1200 B, V_{GE} = 0 B) при T_j = 25 °C при T_i = 125 °C	I _{CES}	- -	3.1 3 12	3.7	мА
Ток утечки затвор-эмиттер (V_{GE} = 20 B, V_{CE} = 0 B)	I _{GES}	-	-	400	нА
Характеристики на переменном токе					
Переходная проводимость (V_{CE} = 20 B, I_{C} = 200 A)	g _{fs}	108	-	-	Си
Входная емкость (V_{CE} = 25 B, V_{GE} = 0 B, f = 1 МГц)	C _{ies}	1	13	-	
Выходная емкость (V_{CE} = 25 B, V_{GE} = 0 B, f = 1 МГц)	C_oes	-	2.0	-	нФ
Обратная переходная емкость $(V_{CE} = 25 \text{ B}, V_{GE} = 0 \text{ B}, f = 1 \text{ МГц})$	C _{res}	ı	1.0	-	114
Характеристики переключения (индуктивная нагрузка	, при Т _ј = 125 °C	;)			
Время задержки включения $(V_{CC} = 600 \text{ B}, V_{GE} = 15 \text{ B}, I_C = 200 \text{ A}, R_{Gon} = 4.7 \text{ Om})$	t _{d(on)}	1	0.11	0.22	Mico
Время нарастания $(V_{CC}$ = 600 B, V_{GE} = 15 B, I_{C} = 200 A, R_{Gon} = 4.7 Ом)	t _r	ı	0.08	0.16	
Время задержки выключения $(V_{CC} = 600 \text{ B}, V_{GE} = -15 \text{ B}, I_C = 200 \text{ A}, R_{Goff} 4.7 \text{ Om})$	t _{d(off)}	ı	0.55	0.8	МКС
Время спада $(V_{CC} = 600 \text{ B}, V_{GE} = -15 \text{ B}, I_C = 200 \text{ A}, R_{Goff} = 4.7 \text{ Om})$		ı	0.08	0.12	

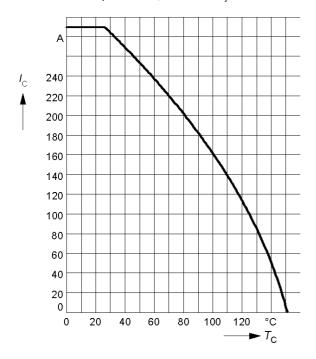

Ток короткого замыкания					
(tp \leq 10 мкс, V_{CC} = 900 B, V_{GE} = \pm 15 B, V_{CEmax} = V_{CES} - $L_{\sigma(CE)} \times$ di/dt, T_j = 125 °C)	I _{SC}	-	1250	-	Α
Внутренняя индуктивность модуля по цепи коллектор-эмиттер	$L_{\sigma(CE)}$	-	30	-	нГн
Характеристики диода обратного тока					
Прямое падение напряжения (I_F = 200 A, V_{GE} = 0 B)					В
при Т _j = 25 °C	V_{F}	-	2.3	2.8	
при T _j = 125 °C		-	1.8	-	
Время обратного восстановления (I _F = 200 A,	4		0.5	-	МКС
V_R = -600 B, V_{GE} = 0 B, di_F/dt = -2000 A/MKC, T_j = 125 °C)	t _{rr}		0.5		
Заряд обратного восстановления					
$(I_F = 200 \text{ A}, V_R = -600 \text{ B}, V_{GE} = 0 \text{ B}, di_F/dt = -2000 \text{ A/MKC})$	0				мкКл
при T _j = 25 °C	Q _{rr}	-	12	-	
при T _j = 125 °C		-	36	-	
Характеристики диода чоппера					
Прямое падение напряжения (I_F = 200 A, V_{GE} = 0 B)					
при Т _j = 25 °C	V_{FC}	-	2.3	2.8	В
при T _j = 125 °C		-	1.8	-	
Время обратного восстановления (I _F = 200 A,	t _{rrC}		0.5		
V_R = -600 B, V_{GE} = 0 B, di_F/dt = -2000 A/MKC, T_j = 125 °C)		-	0.5	-	МКС
Заряд обратного восстановления					
$(I_F = 200 \text{ A}, V_R = -600 \text{ B}, V_{GE} = 0 \text{ B}, di_F/dt = -2000 \text{ A/MKC})$	Q _{rrC}				MARKE
при T _j = 25 °C		-	12	-	мкКл
при T _j = 125 °C		_	36	-	

 $I_C = f(V_{CE})$

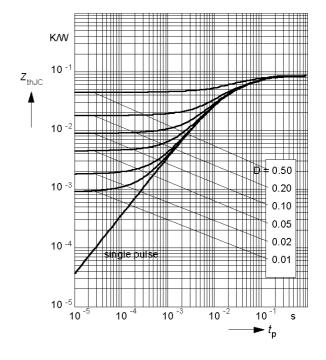
Мощность рассеивания


 $P_{tot} = f(T_C)$

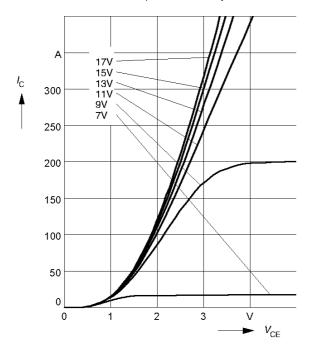
Режим измерения: $T_j \le 150$ °C


Режим измерения: D = 0, T_C = 25 °C, $T_j \le$ 150 °C

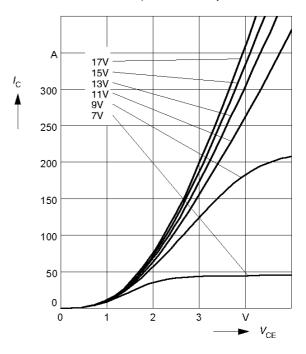
Прямая область безопасной работы


Ток коллектора $I_C = f(T_C)$

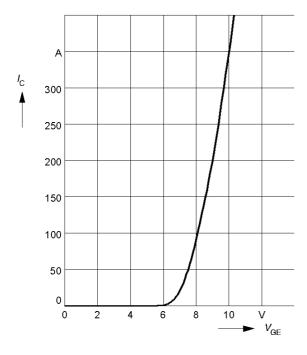
Режим измерения: $V_{GE} \ge 15 \text{ B, } T_i \le 150 \text{ °C}$


Переходное тепловое сопротивление, IGBT Z_{thjc} = $f(t_p)$

Режим измерения: $D = t_p / T$

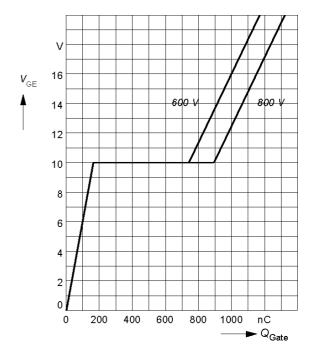

Типовые выходные характеристики $I_C = f(V_{CE})$

Режим измерения: t_p = 80 мкс, T_i = 25 °C

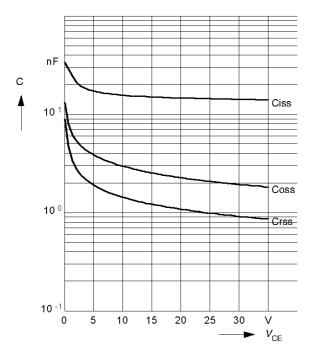

Типовые выходные характеристики $I_C = f(V_{CE})$

Режим измерения: t_p = 80 мкс, T_i = 125 °C

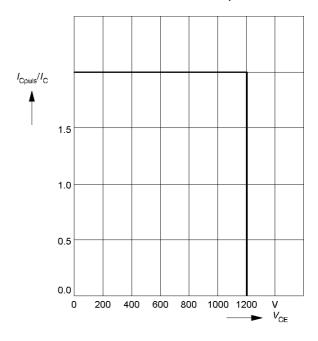
Типовые передаточные характеристики $I_C = f(V_{GE})$


Режим измерения: t_p = 80 мкс, V_{CE} = 20 В

Характеристики заряда затвора

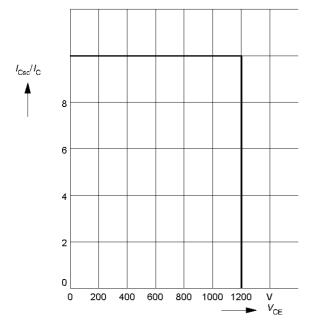

 $V_{GE} = f(Q_{gate})$

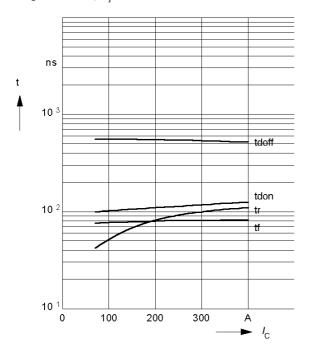
Режим измерения: $I_{C puls} = 200 A$


Характеристики собственных емкостей $C = f(V_{CE})$

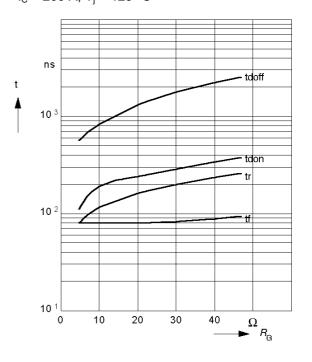
Режим измерения: V_{GE} = 0, f = 1 МГц

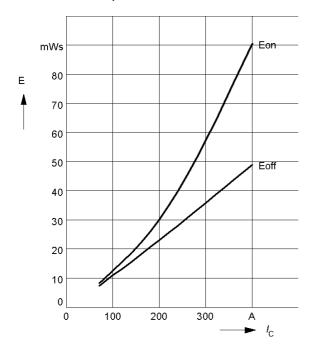
Обратная область безопасной работы $I_{C \text{ puls}}$ = $f(V_{CE})$

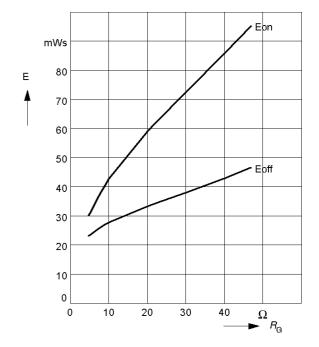

Режим измерения: V_{GE} = 15 B, T_j = 150 °C


Область безопасной работы при коротком замыкании

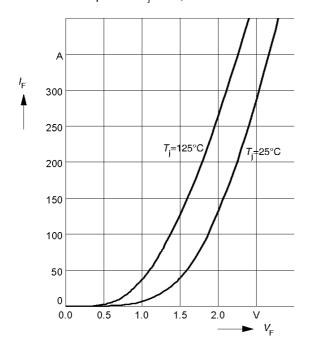
 $I_{C sc} = f(V_{CE})$


Режим измерения: V_{GE} = \pm 15 B, $t_{sc} \leq$ 10 мкс, L < 25 нГн, T_i = 150 °C


Типовые времена переключений t = $f(I_C)$, индуктивная нагрузка Режим измерения: V_{CE} = 600 B, V_{GE} = \pm 15 B, R_G = 4.7 Oм, T_i = 125 °C

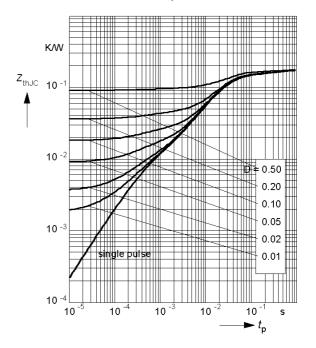

Типовые времена переключений t = $f(R_G)$, индуктивная нагрузка Режим измерения: V_{CE} = 600 B, V_{GE} = \pm 15 B, I_C = 200 A, T_i = 125 °C

Типовые зависимости коммутационных потерь E = $f(I_C)$, индуктивная нагрузка Режим измерения: V_{CE} = 600 B, V_{GE} = \pm 15 B, R_G = 4.7 Oм, T_i = 125 °C


Типовые зависимости коммутационных потерь $E = f(R_G)$, индуктивная нагрузка Режим измерения: V_{CE} = 600 B, V_{GE} = ± 15 B, I_C = 200 A, T_i = 125 °C

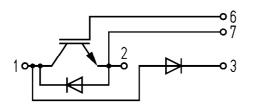
Типовые прямые характеристики диода обратного тока

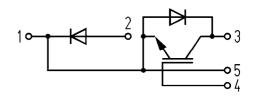
 $I_F = f(V_F)$


Режим измерения: T_i = 25, 125 °C

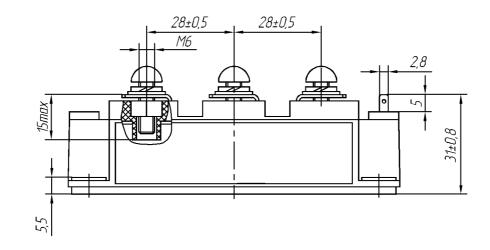
Переходное тепловое сопротивление диода обратного тока

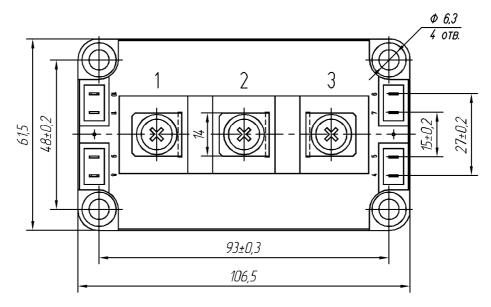
 $Z_{thjc} = f(t_p)$


Режим измерения: $D = t_p / T$



СХЕМЫ ЭЛЕКТРИЧЕСКИЕ ПРИНЦИПИАЛЬНЫЕ


МДТКИ2-200-12


МТКИД2-200-12

ГАБАРИТНЫЕ И УСТАНОВОЧНЫЕ РАЗМЕРЫ

Масса 0.35 кг